Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas

نویسندگان

چکیده

<p style='text-indent:20px;'>For an integer <inline-formula><tex-math id="M1">\begin{document}$ r\ge0 $\end{document}</tex-math></inline-formula>, we prove the id="M2">\begin{document}$ r^{\mathrm{th}} $\end{document}</tex-math></inline-formula> order Reshetnyak formula for ray transform of rank id="M3">\begin{document}$ m symmetric tensor fields on id="M4">\begin{document}$ {{\mathbb R}}^n $\end{document}</tex-math></inline-formula>. Roughly speaking, a field id="M5">\begin{document}$ f id="M6">\begin{document}$ r refers to id="M7">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-integrability higher derivatives Fourier id="M8">\begin{document}$ \widehat over spheres centered at origin. Certain differential operators id="M9">\begin{document}$ A^{(m,r,l)}\ (0\le l\le r) sphere id="M10">\begin{document}$ S}}^{n-1} are main ingredients formula. The defined by algorithm that can be applied any id="M11">\begin{document}$ although volume calculations grows fast with id="M12">\begin{document}$ is realized small values id="M13">\begin{document}$ and formulas orders id="M14">\begin{document}$ 0,1,2 presented in explicit form.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Features in 2D Symmetric Higher-Order Tensor Fields

The topological structure of scalar, vector, and second-order tensor fields provides an important mathematical basis for data analysis and visualization. In this paper, we extend this framework towards higher-order tensors. First, we establish formal uniqueness properties for a geometrically constrained tensor decomposition. This allows us to define and visualize topological structures in symme...

متن کامل

Tracking Lines in Higher Order Tensor Fields

While tensors occur in many areas of science and engineering, little has been done to visualize tensors with order higher than two. Tensors of higher orders can be used for example to describe complex diffusion patterns in magnetic resonance imaging (MRI). Recently, we presented a method for tracking lines in higher order tensor fields that is a generalization of methods known from first order ...

متن کامل

A Support Theorem for the Geodesic Ray Transform of Symmetric Tensor Fields

Let (M, g) be a simple Riemannian manifold with boundary and consider the geodesic ray transform of symmetric 2-tensor fields. Let the integral of f along maximal geodesics vanish on an appropriate open subset of the space of geodesics in M . Under the assumption that the metric g is real-analytic, it is shown that there exists a vector field v satisfying f = dv on the set of points lying on th...

متن کامل

Scaling the Topology of Symmetric, Second-Order Planar Tensor Fields

Tensor fields can be found in most areas of physics and engineering sciences. Topology-based methods provide efficient means for visualizing symmetric, second-order, planar tensor fields. Yet, for tensor fields with complicated structure typically encountered in turbulent flows, topology-based techniques lead to cluttered pictures that confuse the interpretation and are of little help for analy...

متن کامل

The Topology of Symmetric, Second-Order 3D Tensor Fields

We study the topology of symmetric, second-order tensor elds. The results of this study can be readily extended to include general tensor elds through linear combination of symmetric tensor elds and vector elds. The goal is to represent their complex structure by a simple set of carefully chosen points, lines and surfaces analogous to approaches in vector eld topology. We extract topological sk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems and Imaging

سال: 2022

ISSN: ['1930-8345', '1930-8337']

DOI: https://doi.org/10.3934/ipi.2021076